Пятница, 07.08.2020, 11:34Главная | Регистрация | Вход

Меню сайта

Наши партнёры

DIGITAL LAB STUDIO - разработчик, издатель мобильных приложений и сайтов, фото-видео студия, рекламное агентство
LUMINOF - люминофор, флуоресцент и светящиеся краски №1 в Украине!
COMPMAST - Компьютерный сервис, скорая компьютерная помощь №1 в Черкассах и Киеве 0939133710, 0967545215, 0501373907
Автовыкуп Черкассы и Украина №1 0939133710, 0967545215, 0501373907
TRUFEL - высококачественный трюфель и трюфельные продукты №1! Грибы трюфели, трюфеля, трюфель в Украине!
Шафран — высококачественный органический шафран по лучшей цене! SHAFRAN — купить шафран №1 в Украине, шафран цена!


Graffiti Decorations(R) Studio (TM) Site Promoter
Доски объявлений, бесплатные объявления, дать объявление - 495ru.ruКаталог экологических сайтов. Экологические проблемы и пути их решения. GlavBoard.ru Топ Україна

український каталог
Каталог сайтов Украины
Каталог
сайтів України регистрация сайта в каталогах ремонт квартиры своими руками

Добавить сайт

Поиск по сайту

Облако тегов

Глобус посещений

Опрос

Как вы относитесь к проекту захоронения радиоактивных отходов в шахтах?
Всего ответов: 49

Наш баннер

Нажмите "[ Получить код баннера]", скопируйте код и разместите его на своём сайте.

[ Получить код баннера]

Статистика

Статьи
Главная » Статьи » Дополнительная информация

Экологические системы
Провести четкую грань между биоценозом, всегда занимающим какойто определенный биотоп, и экологической системой (экосистемой), представляющей собой единство биоценоза и биотопа, достаточно сложно.

Экологическая система (экосистема) — совокупность популяций различных видов растений, животных и микробов, взаимодействующих между собой и окружающей их средой таким образом, что эта совокупность сохраняется неопределенно долгое время. Примеры экологических систем: луг, лес, озеро, океан.
Экосистемы существуют везде — в воде и на земле, в сухих и влажных районах, в холодных и жарких местностях. Они поразному выглядят, включают различные виды растений и животных. Однако в «поведении» всех экосистем имеются и общие аспекты, связанные с принципиальным сходством энергетических процессов, протекающих в них.

Одним из фундаментальных правил, которым подчиняются все экологические системы, является принцип Ле Шателье—Брауна:
при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия ослабляется.
При изучении экосистем анализируют прежде всего поток энергии и круговорот веществ между соответствующими биотопом и биоценозом. Экосистемный подход учитывает общность организации всех сообществ независимо от местообитания. Это подтверждает сходство структуры и функционирования наземной и водной экосистем.


Термины «экологическая система» и «биогеоценоз»
Экосистема — это любая совокупность организмов и среды их обитания, в том числе, например, горшок с цветком, муравейник, аквариум, болото, пилотируемый космический корабль. У перечисленных систем отсутствует ряд признаков из определения В. Н. Сукачева, и в первую очередь элемент «гео» — Земля. Биоценозы — это только природные образования. Однако биоценоз в полной мере может рассматриваться как экосистема. Таким образом, понятие «экосистема» шире и полностью охватывает понятие «биогеоценоз» или «биогеоценоз» — частный случай «экосистемы».

Самая крупная природная экосистема на Земле — биосфера. Граница между крупной экосистемой и биосферой столь же условна, как и между многими другими понятиями в экологии. Различие преимущественно состоит в такой характеристике биосферы, как глобальность и большая условная замкнутость (при термодинамической открытости). Прочие же экосистемы Земли вещественно практически не замкнуты.

Биомы
Наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли (пустынные, травянистые и лесные); водные экосистемы — основные экосистемы, существующие в водной сфере (гидросфере). Иногда в литературе встречается близкая, но менее четкая классификация, прежде всего выделяющая влалшые тропические леса, саванны, пустыни, степи, леса умеренного пояса, хвойные (тайгу), тундру.
Каждый биом включает в себя ряд меньших по размеру, связанных между собой экосистем. Одни из них могут быть очень крупными, площадью в миллионы квадратных километров, другие — мелкими, например, небольшой лесок.

Важно то, что любую экосистему можно определить как более или менее специфическую группировку растений и животных, взаимодействующих друг с другом и со средой. Так, легко выделить множество типов водных экосистем (ручьи, реки, озера, пруды, болота и др.) или подразделить океаны на отдельные экосистемы (коралловые рифы, континентальный шельф, абиссаль и т. д.). Четкие границы между экосистемами встречаются редко, обычно между ними находится переходная зона со своими особенностями.
На границе двух экосистем, например на опушке леса, одновременно встречаются представители лесных и луговых видов.

Контрастность среды, а потому большее обилие экологических возможностей порождает «сгущение жизни», называемое правилом краевого эффекта или правилом экотона (от греч. oikos — дом, tonos — связь). Хорошо известно, что на опушках леса жизнь богаче, а в его глубине, как и в середине луга, она менее разнообразна. В природе все существует только совместно, а два рядом расположенных образования могут плавно переходить друг в друга.

Структура экосистем
Любую экосистему прежде всего можно разделить на совокупность организмов и совокупность неживых (абиотических) факторов окружающей природной среды. В свою очередь экотоп состоит из климата во всех многообразных его проявлениях и геологической среды (почв и грунтов), называемой эдафотопом (от греч. edaphos — почва). Экотоп — это то, откуда биоценоз черпает средства для существования и куда выделяет продукты жизнедеятельности.

Структура живой части биогеоценоза определяется трофоэнергетическими связями и отношениями, в соответствии с которыми выделяют три главных функциональных компонента:
комплекс автотрофных организмовпродуцентов, обеспечивающих органическим веществом и, следовательно, энергией остальные организмы (фитоценоз (зеленые растения), а также фото и хемосинтезирующие бактерии);
комплекс гетеротрофных организмовконсументов, живущих за счет питательных веществ, созданных продуцентами (зооценоз (животные), а также бесхлорофилльные растения);
в комплекс организмовредуцентов, разлагающих органические соединения до минерального состояния (микробоценоз, а также грибы и прочие организмы, питающиеся мертвым органическим веществом). 

В качестве наглядной модели экологической системы и ее структуры Ю. Одум предложил использовать космический корабль при длительных путешествиях, например, на планеты Солнечной системы или еще дальше. Покидая Землю, люди должны иметь четко ограниченную закрытую систему, которая обеспечивала бы все их жизненные потребности, а в качестве энергии использовала энергию солнечного излучения.

Такой космический корабль должен быть снабжен системами полной регенерации всех жизненно важных абиотических компонентов (факторов), позволяющих их многократное использование. В нем должны осуществляться сбалансированные процессы продуцирования, потребления и разложения организмами или их искусственными заменителями. По сути, такой автономный корабль будет представлять собой микроэкосистему, включающую человека.

Продуктивность экосистем
В процессе жизнедеятельности биоценоза создается и расходуется органическое вещество, т. е. соответствующая экосистема обладает определенной продуктивностью биомассы. Биомассу измеряют в единицах массы или вырал^ают количеством энергии, заключенной в тканях.

Понятия «продукция» и «продуктивность» хотя и выражены однокоренными словами, но в экологии (как и в биологии) имеют различный смысл. Продуктивность — это скорость производства биомассы в единицу времени, которую нельзя взвесить, а можно только рассчитать в единицах энергии или накопления органических веществ. В качестве синонима термина «продуктивность» Ю. Одум предложил использовать термин «скорость продуцирования».

Продуктивность экосистемы говорит о ее «богатстве». В богатом или продуктивном сообществе больше организмов, чем в менее продуктивном, хотя иногда бывает и наоборот, когда организмы в продуктивном сообществе быстрее изымаются или «оборачиваются». Так, урожай травы на корню богатого пастбища, выедаемого скотом, может быть гораздо меньше, чем на менее продуктивном пастбище, на которое не выгоняли скот.
Наличную биомассу или урожаи на корню на данное время нельзя путать с продуктивностью.

Продуктивность текущая и общая
Например, в некоторых конкретных условиях 1 га соснового леса способен за период своего существования и роста образовать 200 м3 древесной массы — это его общая продуктивность. Однако за один год этот лес создает всего лишь около 2 м3 древесины, что является текущей продуктивностью или годовым приростом.
При поедании одних организмов другими пища (вещество и энергия) переходит с одного трофического уровня на последующий. Непереваренная часть пищи выбрасывается.

Животные, обладающие пищеварительным каналом, выделяют фекалии (экскременты) и конечные органические отходы метаболизма (экскреты), например мочевину; и в том и в другом случае содержится некоторое количество энергии. Как животные, так и растения теряют часть энергии при дыхании.

Энергию, оставшуюся после потерь из-за дыхания, пищеварения, экскреции, организмы используют для роста, размножения и процессов жизнедеятельности (мышечная работа, поддержание температуры теплокровных животных и пр.).

Затраты энергии на терморегуляцию зависят от климатических условий и времени года, особенно велики различия между гомойотермными и пойкилотермными животными. Теплокровные, получив преимущество при неблагоприятных и нестабильных условиях среды, потеряли в продуктивности.В целом травоядные усваивают пищу почти в два раз менее эффективно, чем хищники. Это объясняется тем, что растения содержат большое количество целлюлозы, а порой и древесины (включающей целлюлозу и лигнин), которые плохо перевариваются и не могут служить источником энергии для большинства травоядных. Энергия, заключенная в экскрементах и экскретах, передается детритофагам и редуцентам, поэтому для экосистемы в целом она не теряется.

Сельскохозяйственные животные всегда, даже при содержании на пастбище на подножном корму, отличаются более высокой продуктивностью, т. е. способностью более эффективно использовать потребленный корм для создания продукции. Главная причина состоит в том, что эти животные освобождены от значительной части энергетических расходов, связанных с поиском корма, с защитой от врагов, непогоды и т. д.

Первичная продуктивность экосистемы
Сообщества или любой их части определяется как скорость, с которой энергия Солнца усваивается организмамипродуцентами (в основном зелеными растениями) в ходе фотосинтеза или химического синтеза (хемопродуцентами). Эта энергия материализуется в виде органических веществ тканей продуцентов.
Принято выделять четыре последовательные ступени (или стадии) процесса производства органического вещества:
• валовая первичная продуктивность — общая скорость накопления органических веществ продуцентами (скорость фотосинтеза), включая те, что были израсходованы на дыхание и секреторные функции. Растения на процессы жизнедеятельности тратят примерно 20% производимой химической энергии;
вчистая первичная продуктивность — скорость накопления органических веществ за вычетом тех, что были израсходованы при дыхании и секреции за изучаемый период. Эта энергия может быть использована организмами следующих трофических уровней;
чистом продуктивность сообщества — скорость общего накопления органических веществ, оставшихся после потребления гетеротрофамиконсументами (чистая первичная продукция минус потребление гетеротрофами). Она обычно измеряется за какойто период; например, вегетационный период роста и развития растений или за год в целом;
вторичная продуктивность — скорость накопления энергии консументами. Ее не делят на «валовую» и «чистую», так как консументы потребляют лишь ранее созданные (готовые) питательные вещества, расходуя их на дыхание и секреторные нужды, а остальное превращая в собственные ткани.
Ежегодно на суше растения образуют в пересчете на сухое вещество 1,7* 10ит биомассы, эквивалентной 3,2• 1018 кДж энергии — такова чистая первичная продуктивность. Однако, с учетом затраченного на дыхание, валовая первичная продуктивность (работоспособность) наземной растительности составляет около 4,2 • 1018 кДж.

Первичная продукция
Доступная гетеротрофам, а человек относится именно к ним, составляет максимум 4% от общей энергии Солнца, поступающей к поверхности Земли. Поскольку на каждом трофическом уровне энергия теряется, для всеядных организмов (в том числе и для человека) наиболее эффективный способ извлечения энергии — потребление растительной пищи (вегетарианство). 
Однако необходимо учитывать также следующее:
в животный белок содержит больше незаменимых аминокислот и лишь некоторые бобовые (например, соя) приближаются к нему по своей ценности;
растительный белок переваривается труднее, чем животный, изза необходимости предварительно разрушить жесткие клеточные стенки;
в ряде экосистем животные добывают пищу на большой территории, где не выгодно выращивать культурные растения (это неплодородные земли, на которых пасутся овцы или северные олени).
Так, у человека около 8% белков ежедневно выводится из организма (с мочой) и вновь синтезируется. Для полноценного питания необходимо сбалансированное поступление аминокислот, подобных тем, что содержатся в тканях животных.

При отсутствии какойлибо важной для организма человека аминокислоты (например, в злаках) при метаболизме усваивается меньшая доля белков. Сочетание в рационе питания бобовых и зерновых обеспечивает лучшее использование белка, чем при потреблении каждого из этих видов пищи в отдельности.

В более плодородных прибрежных водах продуцирование приурочено к верхнему слою воды толщиной около 30 м, а в более чистых, но бедных водах открытого моря зона первичного продуцирования может простираться вглубь на 100 м и ниже.

Поэтому прибрежные воды выглядят темнозелеными, а океанические — синими. Во всех водах пик фотосинтеза приходится на слой воды, расположенный непосредственно под поверхностным слоем, так как циркулирующий в воде фитопланктон адаптирован к сумеречному освещению и яркий солнечный свет тормозит его жизненные процессы.

Функционирование (динамика) экосистем
Сложные межвидовые взаимоотношения, определяющие функциональную целостность экосистем, отличаются относительной «свободой» структурных связей между отдельными компонентами. Виды в составе конкретных биоценозов могут замещаться биологически сходными видами. Нестабильность абиотических факторов экосистем является причиной колебаний состава и функциональных связей в биоценозах. Динамичность — одно из фундаментальных свойств экосистем, которое отражает не только зависимость последних от комплекса факторов, но и адаптивную (приспособительную) реакцию всей системы на эти факторы.

Масштабы времени, в которых выражается динамика экосистем, различны. Изменения могут иметь суточную или сезонную ритмичность, продолжаться несколько лет или охватывать целые геологические эпохи, влияя на развитие глобальной экосистемы Земли.

На стадии зарождения жизни на Земле бурно шли разнообразные химические реакции. Синтезировались и вступали в последующие реакции одни вещества, другие разлагались, преобразовывались в иные соединения, причем считают, что весь процесс был мало упорядочен и хаотичен. С возникновением жизни химические процессы постепенно стали подчиняться определенным закономерностям и упорядочились. Атомы, входящие в состав органических соединений живой ткани, стали передаваться по пищевой цепи от одного звена к другому и в конце концов возвращаться в неорганическую природу.

Разнообразие организмов
Существуют во всевозможных экосистемах планеты, по образному выражению В. И. Вернадского, образует «живое вещество» Земли. Главной геохимической особенностью живого вещества является то, что оно пропускает через себя атомы химических элементов, осуществляя в процессе жизнедеятельности их закономерную сортировку и дифференциацию. Завершив свой жизненный цикл, организмы возвращают природе все, что взяли от нее в течение жизни.

Малые миграционные потоки химических элементов как между взаимосвязанными организмами, так и между организмами и окружающей их средой складываются в более крупные циклы — круговороты. Продолжительность и постоянство существования жизни поддерживают именно круговороты, потому что без них даже в масштабах всей Земли запасы необходимых элементов были бы очень скоро исчерпаны.

Круговорот биологический (биотический)
Явление непрерывного, циклического, закономерного, но неравномерного во времени и пространстве перераспределения вещества, энергии и информации в пределах экологических систем различного иерархического уровня организации — от биогеоценоза до биосферы. Круговорот веществ в масштабах всей биосферы называют большим кругом, а в пределах конкретного биогеоценоза — малым кругом биотического обмена.Часть биологического круговорота, состоящая из круговоротов углерода, воды, азота, фосфора, серы и других биогенных веществ, называют биогеохимическим круговоротом.

Некоторое количество вещества может на время выбывать из биологического круговорота (осаждаться на дне океанов, морей, выпадать в глубины земной коры и т. п.). Однако в результате протекания тектонических и геологических процессов (вулканической деятельности, подъема и опускания земной коры, изменения границ между сушей и водой и др.) осадочные породы вновь включаются в круговорот, называемый геологическим циклом или круговоротом.

Круговороты веществ от продуцентов к консументам различных уровней, затем к редуцентам, а от них вновь к продуцентам замкнуты не полностью. Если бы в экосистемах существовала их полная замкнутость, то не возникало бы никаких изменений среды жизни, не было бы почвы, известняков и прочих горных пород биогенного происхождения. Таким образом, биотический круговорот можно условно изобразить в виде незамкнутого кольца. 

Потери вещества из-за незамкнутости круговорота минимальны в биосфере (самой крупной экосистеме планеты). Информация в экосистемах теряется с гибелью видов и необратимыми генетическими перестройками.

Таким образом, каждая экосистема поддерживает свое существование за счет круговорота биогенов и постоянного притока солнечной энергии. Круговорот энергии в экосистемах практически отсутствует, поскольку от редуцентов она (энергия) возвращается к консументам в мизерных количествах.

Считают, что коэффициент круговорота энергии не превышает 0,24%. Энергия может накапливаться, сберегаться (т. е. преобразовываться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Единожды пройдя от растенийпродуцентов через консументы к редуцентам, энергия выносится в околоземное и космическое пространство. При движении через экосистему поток энергии затрагивает в основном ее биоценоз, поэтому он подробно рассмотрен ранее.

Круговорот биогенных элементов
Продуценты, консументы, детритофаги и редуценты экосистемы, поглощая и выделяя различные вещества, взаимодействуют между собой четко и согласованно. Органические вещества и кислород, образуемые фотосинтезирующими растениями, — важнейшие продукты питания и дыхания консументов.

В то же время выделяемые консументами диоксид углерода и минеральные вещества навоза и мочи являются биогенами, столь необходимыми продуцентам. Поэтому вещества в экосистемах совершают практически полный круговорот, попадая сначала в живые организмы, затем в абиотическую среду и вновь возвращаясь в живое.

Вот один из основных принципов функционирования экосистем:
получение ресурсов и переработка отходов происходят в процессе круговорота всех элементов.
К числу наиболее важных и распространенных биогенных элементов относятся кислород, углерод, азот и фосфор.

Круговорот углерода
В настоящее время для обозначения С02 в химии принято пользоваться термином «диоксид углерода», однако в биологической и иной литературе все еще распространен термин «углекислый газ», понятный более широкому кругу читателей.
В ходе фотосинтеза атомы углерода переходят из состава углекислого газа С02 в состав глюкозы и других органических веществ растительных клеток. Далее они переносятся по пищевым цепям, образуя ткани всех остальных живых существ экосистемы.

Однако побывать в составе клеток живых организмов всех трофических уровней удается только малому числу атомов углерода, так как на каждом уровне большинство органических молекул расщепляется в процессе клеточного дыхания для получения энергии.

После этого атомы углерода поступают в абиотическую часть окружающей среды в составе углекислого газа, чем завершается один цикл и создаются предпосылки начала другого цикла. Аналогичным образом углерод возвращается в атмосферу при сжигании любых органических соединений, например древесины, сухой травы или листьев, а также ископаемого топлива.

Вывод части углерода из естественного круговорота экосистемы и «резервирование» в виде ископаемых запасов органического вещества в недрах Земли является важной особенностью рассматриваемого процесса. 

В далекие геологические эпохи значительная часть фотосинтезируемого органического вещества не использовалась ни консументами, ни редуцентами, а накапливалась в виде детрита. Позже слои детрита были погребены под слоями различных минеральных осадков, где под действием высоких температур и давления за миллионы лет превратились в нефть, уголь и природный газ (в зависимости от исходного материала, продолжительности и условий пребывания в земле)

Подобные процессы протекают и в настоящее время, но значительно менее интенсивно. Их результат — образование торфа.

В водных экосистемах прерывание круговорота углерода связано с включением С02 в состав известняков, мела, кораллов в виде СаС03. При этом углерод исключается из круговорота на целые геологические эпохи.

Круговорот фосфора
Из всех макроэлементов (элементов, необходимых для всего живого в больших количествах) фосфор — один из самых редких в доступных резервуарах на поверхности Земли. В природе он содержится в различных природных минералах (прежде всего в ряде горных пород) в виде неорганического фосфатиона. Фосфаты растворимы в воде, но не летучи. При разрушении горных пород или выщелачивании атмосферными осадками соединения фосфора растворяются. Далее из водного раствора поглощается растениями и включается в состав их органических соединений, выступая в дальнейшем в форме «органического фосфата».

По пищевым цепям фосфор последовательно переходит от растений к организмам всех трофических уровней, и аналогично углероду в каждом из организмов велика вероятность окисления при клеточном дыхании фосфорсодержащего соединения с целью получения необходимой для жизнедеятельности энергии. Если это происходит, то фосфат в составе мочи или ее аналога выводится из организма в окружающую среду, где может снова быть поглощен растениями и вновь запущен в круговорот.

Принципиальное различие круговоротов фосфора и углерода состоит в наличии либо отсутствии газовой фазы на одном из этапов цикла. Диоксид углерода в газообразном состоянии, попадая в воздух, свободно распространяется в атмосфере, переносясь на неограниченные расстояния, пока снова не будет усвоен растениями. В круговороте фосфора подобного этапа нет.
Попадая со сточными водами в водоемы, фосфат насыщает, а порой перенасыщает их экологические системы. Обратно на сушу фосфор в естественных условиях возвращается практически только с пометом и после гибели рыбоядных птиц. Абсолютное большинство фосфатов образует донные отложения, и круговорот вступает в свою самую замедленную фазу. Лишь геологические процессы, протекающие миллионы лет, реально могут поднять океанические отложения фосфатов, после чего возможно повторное включение фосфора в описанный круговорот.

Фосфор и другие минеральные биогены циркулируют в пределах экосистемы лишь тогда, когда содержащие их «отходы» жизнедеятельности откладываются в местах поглощения соответствующего элемента. В естественных экосистемах преимущественно так и происходит. Однако вмешательство человека, заключающееся в сборе урожая, содержащего извлеченные из почвы биогены, и перемещение его на большие расстояния к местам потребления нарушает круговорот. Отходы жизнедеятельности человека попадают преимущественно в водоемы. Изъятие фосфора из почв полей в современном сельском хозяйстве компенсируется внесением минеральных фосфорных удобрений, получаемых из природных апатитов, главным месторождением которых в нашей стране является Хибинское (Кольский полуостров). Всего в мире ежегодно добывают 1—2 млн т фосфорсодержащих пород.

Круговорот азота
Главный источник азота органических соединений — молекулярный азот атмосферного воздуха, но растения не способны усвоить его в газообразном виде. Абсолютному большинству организмов азот доступен только в составе ионов аммония (NHj) или нитрата (NOg).

В природных условиях переход азота из газообразного N3 в фиксированную форму (ионы аммония или нитрата) возможен следующим образом:
при разрядах атмосферного электричества во время грозы из азота и кислорода воздуха синтезируются оксиды азота, которые с дождем в виде азотной кислоты или иных растворимых нитратов попадают в почву. Фиксация азота возможна и как результат фотохимических реакций в атмосфере. Ежегодная азотфиксация разрядами молний составляет 4—10 кг/га;
при отмирании особых азотфиксирующих микроорганизмов (отдельных видов бактерий), обладающих уникальной способностью превращать газообразный азот в аммонийную форму, почва обогащается органическим азотом. Ежегодно они дают около 25 кг/га;
путем эффективной фиксации азота бактериями, живущими в клубеньках бобовых растений и образующими с ними симбиотические связи, что является хорошим примером мутуализма. Растения обеспечивают бактериям местообитание и пищу (сахара), а взамен получают доступную форму азота. Таким путем в наземных и подземных органах растений (например, сои, клевера или люцерны) за год накапливается азота 150—400 кг/га;
В результате симбиоза от цианобактерий в растения азот попадает в форме нитратов, которые через корни и проводящие пути доставляются к листьям, где используются для синтеза протеинов — основы азотного питания животных. Таким образом, все естественные экосистемы полностью зависят от азотфиксирующих микроорганизмов. Важную роль в наземных экосистемах играют бобовые растения. Это семейство включает в себя огромное число представителей клевера, от обычного для лугов и степей до тропических деревьев и кустарников пустыни. Каждая крупная наземная экосистема имеет характерные для нее виды бобовых. Бобовые обычно первыми заселяют территорию после пожара.
В водных экосистемах круговорот азота происходит аналогичным образом, причем в роли основных азотфиксаторов выступают синезеленые водоросли.Возврат азота в атмосферу (минерализация) есть результат деятельности бактерийденитрификаторов, разлагающих нитраты до свободных азота и кислорода.

Бактерииденитрификаторы более разнообразны и многочисленны, чем азотфиксирующие бактерии.Вещества, не характерные для живых тканей, не имеют естественных (природных) циклов круговорота в экосистемах либо характеризуются очень слабым (малоинтенсивным) круговоротом, потому они имеют тенденцию накапливаться в тканях живых организмов.

К подобным веществам относятся, например, радиоактивный стронций90, некогда существовавший в природе, однако изза малого периода полураспада к определенному моменту времени полностью исчезнувший в биосфере и вновь появившийся после того, как началось искусственное расщепление атома. Это и пестициды, и диоксины, и многие другие соединения, а также тяжелые металлы (ртуть, кадмий, медь, цинк и др.), интенсивность антропогенного вовлечения которых в естественный круговорот значительно увеличилась.

Гомеостаз экосистемы
Устойчивость и сбалансированность процессов, протекающих в экосистемах, позволяет констатировать, что им в целом свойственно состояние гомеостаза, подобно входящим в их состав популяциям и каждому живому организму. Нестабильность среды обитания в экосистемах компенсируется биоценотическими адаптивными механизмами.

При незначительных нарушениях условий в экосистеме на фоне неизменных средних характеристик среды принципиальная структура биоценоза сохраняется за счет функциональной адаптации. При более существенном нарушении состава биоценоза возникают неустойчивые, сменяющие друг друга сообщества. Этот процесс в идеальном случае ведет к восстановлению исходного типа экосистемы. Экологические сукцессии — одно из наиболее ярких выражений механизма поддержания гомеостаза на уровне экосистемы.

В естественной экосистеме постоянно поддерживается равновесие, исключающее необратимое уничтожение тех или иных звеньев трофической сети. Это является следствием длительного эволюционного процесса, названного Ч. Дарвиным естественным отбором. Любая экосистема всегда сбалансирована и устойчива (гомеостатична), причем системы тем стабильнее во времени и пространстве, чем они сложнее.

Человек постоянно вмешивается в процессы, происходящие в экосистемах, влияя на них в целом и на отдельные звенья, создавая антропогенные помехи. Он все сильнее нарушает природные механизмы контроля или пытается заменять естественные механизмы на искусственные.

Суточные и сезонные ритмичные изменения
Практически каждая экологическая система приспособлена к ритмическим изменениям абиотических факторов. Реакция выражается в изменении активности биоценозов и преимущественно связана с суточными и сезонными изменениями условий среды обитания. Характерно, что при такой динамике сохраняются принципиальные свойства экосистемы, в том числе целостность и функциональная устойчивость. Даже сезонные изменения видового состава не нарушают общую характеристику каждой данной экосистемы, ибо закономерно повторяются каждый год.

Суточные изменения
В течение суток не происходит принципиальных изменений видового состава и основных форм взаимоотношений в биоценозах, поэтому более точно следует говорить не о суточной динамике, а об аспектах суточной активности. Суточная активность прежде всего определяется изменением солнечной освещенности.
Сезонные изменения. Они затрагивают фундаментальные характеристики экосистем, в первую очередь видовой состав и продуктивность биоценозов. В неблагоприятные сезоны ряд видов мигрирует в районы с лучшими условиями существования. Это характерно для перелетных птиц, ряда копытных млекопитающих и др. Оседлые виды составляют ядро биоценоза, а сезонные виды определяют его облик и биоценотические связи в отдельные периоды. Во всех случаях уменьшение числа активных видов влечет снижение интенсивности круговорота биогенов.

Сукцессия
Динамика экосистемы определяется серией сменяющих друг друга сообществ.Экологическая сукцессия (от лат. successio — преемственность, наследование), сукцессионное замещение или биологическое развитие — развитие, при котором в пределах одной и той же территории (биотопа) происходит последовательная смена одного биоценоза другим в направлении повышения устойчивости экосистемы.

Сукцессионный ряд — цепь сменяющих друг друга биоценозов. Процессы сукцессии занимают определенные промежутки времени. Чаще всего это — годы и десятки лет, но встречаются и очень быстрые смены сообществ, например, во временных водоемах, и очень медленные — вековые изменения экосистем, связанные с эволюцией на Земле.

Сукцессия завершается формированием сообщества, наиболее адаптированного по отношению к комплексу сложившихся климатических условий. Такое сообщество было названо Ф. Клементсом климаксформацией или просто климаксом (от греч. klimax — лестница), хотя в современной литературе по экологии иногда встречается и другой терминсиноним — зрелое сообщество.

Концепция «климакса» подразумевает, что в пределах региона с более или менее однородным климатом фитоценозы, завершившие сукцессионный процесс, образуют климаксные сообщества независимо от того, с какого типа начиналась сукцессия.

Причиной начала процесса сукцессии в ряде случаев являются изменения фундаментальных свойств среды обитания, возникающие под влиянием комплекса факторов. Такие факторы бывают естественными — отступление ледников, наводнения, землетрясения, извержения вулканов, пожары, а также антропогенными — расчистка лесных угодий, распашка участков степи, открытая добыча полезных ископаемых, создание прудов и водохранилищ, пожары, загрязнение экологических систем.

Сукцессии делят на первичные и вторичные
Первичные сукцессии.
Они начинаются на субстрате,не измененном (или почти не измененном) деятельностью живых организмов. Так, через серию промежуточных сообществ формируются устойчивые сообщества на скалах, песках, обрывах, остывшей вулканической лаве, глинах после отступления ледника или прохождения селя и т. п. Одна из основных функций сукцессии такого рода — постепенное накопление органических остатков и, как результат, создание (или изменение) почвы первичными колонистами. Далее меняется гидрологический режим и происходят прочие изменения местообитания. Первичная сукцессия от голой скальной породы к зрелому лесу может занять от нескольких сотен до тысяч лет.

Вторичные сукцессии.
Они развиваются на субстрате, первоначально измененном деятельностью комплекса живых организмов, существовавших на данном месте ранее — до пожара, наводнения, вырубки и т. п. В таких местах обычно почва или донные отложения не уничтожены, т. е. сохраняются богатые жизненные ресурсы и сукцессии чаще всего бывают восстановительными. Здесь в почве могут сохраняться семена, споры и органы вегетативного размножения, например корневища, которые будут влиять на сукцессию.

Смена фаз сукцессии идет в соответствии с определенными правилами. Каждая предыдущая фаза готовит среду для возникновения последующей, постепенно нарастают видовое многообразие и ярусность. Вслед за растениями в сукцессию вовлекаются представители животного мира, а развивающийся биоценоз становится более богатым видами; цепи питания в нем усложняются, развиваются и превращаются в сети питания.

Активизируется деятельность редуцентов, возвращающих органическое вещество из почвы в состав биомассы, ее объем неуклонно растет. Процесс практически прекращается, когда добавление или исключение видов не приводит к изменению среды развивающейся экосистемы.

Деградационные сукцессии
Это специфическая форма смены сообществ, заключающаяся в последовательном использовании различными видами разлагающейся органики. Особенностями таких сукцессии является то, что сообщества состоят только из гетеротрофных организмов, а ход сукцессии направлен в сторону все большего структурного и химического упрощения скоплений органического вещества.
Вековые смены экосистем.

Сукцессии такого масштаба отражают историю развития жизни на Земле. Наглядным примером исторической смены экосистем служат изменения сообществ растений и животных по мере отступления ледников после крупных оледенений. Другой хорошо изученный пример — формирование современных типов экосистем на территории Каракумов по мере отступления древнего АралоКаспийского моря.

В случаях, когда в процессе эволюции под действием естественного отбора вымирают целые виды, а выжившие особи других размножаются, адаптируются и изменяются, говорят об эволюционной сукцессии.

Общие закономерности сукцессии 
Изменения в общей продуктивности, дыхании и биомассе в ходе типичной сукцессии. По мере прохождения фаз сукцессии все большая доля доступных питательных веществ накапливается в биомассе сообщества и соответственно уменьшается их содержание в абиотической части экосистемы (биотопе). По мере возрастания количества образующегося детрита он становится основным источником питания. В результате роль пастбищных цепей становится менее существенной, а детритных — усиливается.
Когда экосистема приближается к состоянию климакса, в ней, как и в любых равновесных системах, происходит замедление всех процессов развития.

Биогеохимические круговороты любых экосистем замкнуты не полностью, однако степень незамкнутости варьируется в очень больших пределах. Ф. Борманн и Г. Патэн в 1979 г. установили, что примерно за 10 лет с момента начала восстановления растительного п

Категория: Дополнительная информация | Добавил: ECOLOG_DL (28.04.2009)
Просмотров: 4019 | Теги: Экологические системы | Рейтинг: 5.0/1 |
ECOLOG © - Копирование материалов сайта разрешено ТОЛЬКО с АКТИВНОЙ ссылкой на источник www.ecolog.at.ua. Правила использования и копирования информации с сайта ECOLOG вы можете прочитать ->ЗДЕСЬ<-. Все права защищены. |2009-2015| Designed by BI_Group